Archive

Tag Archives: #linkeddata

Last week, I conferenced! I attended the 16th International Semantic Web Conference (ISWC 2017) in Vienna at the beginning of the week and then headed up to FORCE 2017 in Berlin for the back half of the week. For the last several ISWC, I’ve been involved in the organizing committee, but this year I got to relax. It was a nice chance to just be an attendee and see what was up. This was made even nicer by the really tremendous job Axel, Jeff and their team did  in organizing both the logistics and program. The venues were really amazing and the wifi worked!

Before getting into what I thought were the major themes of the conference, lets do some stats:

  • 624 participants
  • Papers
    • Research track: 197 submissions – 44 accepted – 23% acceptance rate
    • In-use: 27 submissions – 9  accepted – 33% acceptance rate
    • Resources: 76 submissions – 23 accepted – 30% acceptance rate
  • 46 posters & 61 demos
  • Over 1000 reviews were done excluding what was done for the workshop / demos / posters. Just a massive amount of work in helping work get better.

This year they expanded the number of best reviewers and I was happy to be one of them:

You can find all the papers online as preprints.

The three themes I took away from the conference were:

  1. Ecosystems for knowledge engineering
  2. Learn from everything
  3. More media

Ecosystems for knowledge engineering

This was a hard theme to find a title for but there were several talks about how to design and engineer the combination of social and technical processes to build knowledge graphs. Deborah McGuinness in her keynote talked about how it took a village to create effective knowledge driven systems. These systems are the combination of experts, knowledge specialists, systems that do ML, ontologies, and data sources. Summed up by the following slide:

My best idea is that this would fall under the rubric of knowledge engineering. Something that has always been part of the semantic web community. What I saw though was the development of more extensive ideas and guidelines about how to create and put into practice not just human focused systems but entire social-techical ecosystems that leveraged all manner of components.

Some examples: Gil et al.’s paper on  creating a platform for high-quality ontology development and data annotation explicitly discusses the community organization along with the platform used to enable it. Knoblock et al’s paper on creating linked data for the American Art Collaborative discusses not only the technology for generating linked data from heterogenous sources but the need for a collaborative workflow facilitated by a shared space (Github) but also the need for tools used to do expert review.  In one of my favorite papers, Piscopo et al evaluated the the provenance of Wikidata statements and also developed machine learning models that could judge authoritativeness & relevance of potential source material. This could provide a helpful tool in allowing Wikidata editors to garden the statements automatically added by bots. As a last example, Jamie Taylor in his keynote discussed how at Google they have a Knowledge Graph Schema team that is there to support a developers in creating interlocking data structures. The team is focused on supporting and maintaining quality of the knowledge graph.

A big discussion area was the idea coming out of the US for a project / initiative around an Open Knowledge Network introduced by Guha. Again, I’ll put this under the notion of how to create these massive social-technical knowledge systems.

I think more work needs to be done in this space not only with respect to the dynamics of these ecosystems as Michael Lauruhn and I discussed in a recent paper but also from a reuse perspective as Pascal Hitzler has been talking about with ontology design patterns.

Learn from everything

The second theme for me was learning from everything. Essentially, this is the use of the combination of structured knowledge and unstructured data within machine learning scenarios to achieve better results. A good example of this was presented by Achim Rettinger on using cross modal embeddings to improve semantic similarity and type prediction tasks:

Likewise, Nada Lavrač discussed in her keynote how to different approaches for semantic data mining, which also leverages different sources of information for learning. In particular, what was interesting is the use of network analysis to create a smaller knowledge network to learn from.

A couple of other examples include:

It’s worth calling out the winner of the renewed  Semantic Web Challenge from IBM, which used deep learning in combination with sources such as dbpedia, geonames and background assumptions for relation learning.

2017-10-23 20.44.14.jpg

Socrates – Winner SWC

(As an aside, I think it’s pretty cool that the challenge was won by IBM on data provided by Thomson Reuters with an award from Elsevier. Open innovation at its best.)

For a more broad take on the complementarity between deep learning and the semantic web, Dan Brickley’s paper is a fun read. Indeed, as we start to potentially address common sense knowledge we will have to take more opportunity to learn from everywhere.

More media

Finally, I think we saw an increase in the number of works dealing with different forms of media. I really enjoyed the talk on Improving Visual Relationship Detection using Semantic Modeling of Scene Descriptions given by Stephan Brier. Where they used a background knowledge base to improve relation prediction between portions of images:

tresp.png

There was entire session focused on multimodal linked data including talks on audio ( MIDI LOD cloud, the Internet Music Archive as linked data) and images IMGPedia content analyzed linked data descriptions of Wikimedia commons.  You can even mash-up music with the SPARQL-DJ.

Conclusion

DBpedia won the 10 year award paper. 10 years later semantic technologies and in particular the notion of a knowledge graph are mainstream (e.g. Thomson Reuters has a 100 billion node knowledge graph). While we may still be focused too much on the available knowledge graphs  for our research work, it seems to me that the community is branching out to begin to answer a range new questions (how to build knowledge ecosystems?, where does learning fit?, …) about the intersection of semantics and the web.

Random Notes:

Advertisements

Last week, I was in Japan for the 15th International Semantic Web Conference. 

For me, this was a big event as I was research track program co-chair together with the amazing Elena Simperl. Being a program chair is a funny thing, you’re not directly responsible for any individual paper, presentation or review but you feel responsible for the entirety. And obviously, organizing 664 reviews for 212 submissions isn’t something to be taken lightly. Beyond my service as research track chair, I think my main contribution was finding good coffee near the event:

With all that said, I think the entire program was really solid. All the preprints are on the website and the proceedings are available from Springer. I’ll try to summarize my main takeaways below. But first some quick stats:

  • 430 participants
  • 212 (research track) + 43 (application track) + 71 (resources track) = 326 submissions
    • that’s up by 61 submission from last year!
  • Acceptance rates:
    • 39/212  =  18% (research track)
    • 12/43 = 28% (application track)
    • 24/71 = 34%  (resources track)
    • I think these reflect the aims of the individual tracks
  • We also had 102 posters and demos and 12 journal track papers
  • 35 student travel winners

My three main takeaways:

  1. Frames are back!
  2. semantics on the web (notice the case)
  3. Science as the next challenge
  4. SPARQL as a driver for other CS communities

(Oh and apologies for the gratuitous use of images and twitter embeds)

Frames are back!

For the past couple of years, a chunk of the community has been focused on the problem of entity resolution/disambiguation whether that’s from text to a KB or across multiple KBs. Indeed, one of the best paper winners (yes, we gave out two – both nominees had great papers) by ISI’s Information Integration Group was an excellent approach to do multi-type entity resolution.  Likewise, Axel and crew gave a pretty heavy duty tutorial on link discovery. On the NLP front, Stefano Faralli presented a nice resource that disambiguates text to lexical resources with a focus on providing both symbolic and distributional representations .

2016-10-21 10.32.59.jpg2016-10-21 10.34.59.jpg

What struck me at the conference were the number of papers beginning to think not just about entities and their relations but the context they are in. This need for context was well motivated by the folks at IBM research working on medical question answering.

Essentially, thinking about classic AI frames but how do obtain these automatically. A clear example of this is the (ongoing) work on FRED:

Similarly, the News Reader system for extracting information into situated events is another example. Another example is extracting process graphs from medical texts. Finally, in the NLP community there’s an increasing focus on developing resources in order to build automated parsers for frame-style semantic representations (e.g. Abstract Meaning Representation). Such representations can be enhanced by connections to semantic web resources as discussed by Burns et al. (I knew this was a great idea in 2015!)

2016-10-21 10.58.15.jpg

In summary,  I think we’re beginning to see how the background knowledge available on the Semantic Web combined with better parsers can help us start to deal better with context in an automated fashion.

semantics on the web

Chris Bizer gave an insightful keynote reflecting on what the community’s expectations were for the semantic web and where we currently are at.

He presented stats on the growth of Linked Data (e.g. stuff in the LOD cloud) as well as web data (e.g. schema.org marked pages) but really the main take away is the boom in the later. About 30% of the Web has html embedded data something like 12 million websites.  There’s an 86% adoption rate on top travel website.  I think the choice quote was:

“Probably, every hotel on earth is represented as web data.”

The problem is that this sort of data is not clean, it’s messy – it’s webby data, which brings to Chris’s important point for the community:

2016-10-20-09-46-12

While standards have brought us a lot, I think we are starting as a research community to think increasingly about different kinds of semantics and different kinds of structured data.  Some examples from the conference:

An embrace of the whole spectrum of semantics on the web is really a valuable move for the research community. Interestingly enough, I think we can truly experiment with web data through things like Common Crawl and the Web Data Commons. As knowledge graphs, triple stores, and ontologies become increasingly common place especially in enterprise deployments, I’m heartened by these new areas of investigation.

The next challenge: Science

Personally, the third keynote of ISWC by Professor Hiroaki Kitano – the CEO of Sony CSL and creator among other things of the AIBO and founder of RoboCup gave a inspirational speech laying out what he sees as the next AI grand challenge:

2016-10-21 09.20.30.jpg

It will be hard for me to do justice to the keynote as the material per second ratio was pretty much off the chart but he has AI magazine article laying out the vision.

Broadly, he used RoboCup as a framework for discussing how to organize a challenge and pointed to its effectiveness. (e.g Kiva systems a RoboCup spinout was acquired by Amazon for $770 million). He then focused on the issue of the inefficiency in scientific discovery and in particular how assembling knowledge is just too difficult.

:2016-10-21 09.21.04.jpg

2016-10-21 09.40.53 copy.jpg

Assembling this by hand is way too hard!

He then went on to reframe the scientific question as one of a massive search and verification of hypothesis space. 2016-10-21 09.52.29.jpg

I walked out of that keynote pretty charged up.

I think the semantic web community can be a big part of tackling this grand challenge. Science and medicine have always been important domains for applying these technologies and that showed up at this conference as well:

SPARQL as a driver for other CS communities

The 10 year award was given to  Jorge Perez , Marcelo Arenas and Claudio Gutierrez for their paper Semantics and Complexity of SPARQL. Jorge gave just a beautiful 10 minute reflection on the paper and the relationship between theory and practice. I think his slide below really sums up the impact that SPARQL has had not just on the semantic web community but CS as a whole:

2016-10-19 09.35.39.jpg

As further evidence, I thought one of the best technical talks of the conference (even through an earthquake) was by Peter Bonz on emergent schemas for RDF querying.

It was a clear example of how the two DB and semweb communities are learning from one another and that by the semantic web having different requirements (e.g. around schemas), this drives new research.

As a whole, it’s hard to beat a conference where you learn a ton and has the following:

2016-10-19 10.52.15.jpg

Random Pointers

It’s kind of appropriate that my last post of 2015 was about the International Semantic Web Conference (ISWC) and my first post of 2016 will be about ISWC.

This years conference will be held in Kobe Japan. This year’s conference already has a number of great things in store. We already have a stellar list of keynote speakers:

  • Kathleen McKeown – Professor of Computer Science at Columbia University,
    Director of the Institute for Data Sciences and Engineering, and Director of the North East Big Data Hub. I was at the hub’s launch last year and it’s really amazing the researchers she brought together through that hub.
  • Hiroaki Kitano – CEO of Sony Computer Science Laboratory and President of the systems biology institute. A truly inspirational figure who done everything from RoboCup to systems biology. He was even an invited artist at MoMA.
  • Chris Bizer – Professor at the Univesity of Mannheim  and Director of the Institute of Computer Science and Business Informatics there. If you’re in the Semantic Web community – you know the amazing work Chris has done. He really kicked the entire move toward Linked Data into high gear.

We have three tracks for you to submit to:

  1. The classic Research Track. Elena and I hope to get your most innovative and groundbreaking work on the cross between semantics and the web writ large. We’ve put together a top notch PC to give you feedback.
  2. The Resources Tracks. Reusable resources like datasets, ontologies, benchmarks and tools are crucial for many research disciplines and especially ours. This track focuses on highlighting them. Alasdair and Marta have put together a rich set of guidelines for a great reusable resources. Check them out.
  3. The Applications Track provides an area to discuss the benefits and challenges of applying semantic technologies. This track, organized by Markus and Freddy, is accepting three different types of submissions on in-use applications, industry applications and industry applications.

In addition to these tracks, ISWC 2016 will have a full program of workshops, posters, demos and student opportunities.

This year we’ll also be allowing submissions to be HTML, letting you experiment with new ways of conveying your contributions. I’m excited to see the creativity in the community using web technologies.

So get those submissions in. Abstracts are due April 20, Full submissions April 30th!

 

 

 

 

%d bloggers like this: