Data analysis in the face of changing Knowledge Organization Systems

This past week I attended a workshop the Evolution and variation of classification systems organized by the Knowescape EU project. The project studies how knowledge evolves and makes cool maps like this one:

The aim of the workshop was to discuss how knowledge organization systems and classification systems change.  By knowledge organization systems, we mean things like the Universal Decimal Classification system or the Wikipedia Category Structure. My interest here is the interplay between the change in data and the change in the organization system used for that data. For example, I may use a certain vocabulary or ontology to describe a dataset (i.e. the columns), how does that impact data analysis procedures when that organization’s meaning changes.  Many of our visualizations decisions and analysis are based on how we categorize (whether mechanical or automatically) data according to such organizational structures. Albert Meroño-Peñuela gave an excellent example of that with his work on dutch historical census data. Furthermore, the organization system used may impact the ability to repurpose and combine data.

Interestingly, even though we’ve seen highly automated approaches emerge for search and other information analysis tasks Knowledge Organization Systems (KOSs) still often provide extremely useful information. For example, we’ve see how scheme.org and wikipedia structure have been central to the emergence of knowledge graphs. Likewise, extremely adaptable organization systems such as hashtags have been foundational for other services.

At the workshop, I particularly enjoyed Joesph Tennis keynote on the diversity and stability of KOSs. He’s work on ontogeny is starting to measure that change. He demonstrated this by looking at the Dewey Decimal System but others have shown that the change is apparent in other KOSs (1, 2, 3, 4). Understanding this change could help in constructing better and more applicable organization systems.

From both Joseph’s talk as well as the talk Richard Smiraglia (one of the leaders in the Knowledge Organization), it’s clear that as with many other sciences our ability to understand information systems can now become much more deeply empirical. Because the objects of study (e.g. vocabularies, ontologies, taxonomies, dictionaries) are available on the Web in digital form we can now analyze them. This is the promise of Web Observatories. Indeed, that was an interesting outcome of the workshop was that the construction of KOSs observatory was not that far fetched and could be done using aggregators such as Linked Open Vocabularies and Taxonomy Warehouse. I’ll be interested to see if this gets built.

Finally, it occurred to me that there is a major lack of studies on the evolution of the urban dictionary as a KOS. Somewhat ought to do something about it 🙂

Random Notes

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: